Telegram Group & Telegram Channel
⚡️ Проект llama-3.2-from-scratch, созданный пользователем rasbt (Себастьян Рашка), представляет собой реализацию модели Llama 3.2 на языке PyTorch с нуля.

Цель проекта — предоставить понятный и минималистичный код для изучения и исследования архитектуры больших языковых моделей (LLM).​

Основные особенности проекта:

- Простота и доступность кода: Реализация оптимизирована для читаемости, что делает её подходящей для образовательных целей и исследований.​

- Минимальные зависимости: Для работы требуются только библиотеки torch, tiktoken и blobfile, что упрощает установку и использование.​

- Предоставление предобученных весов: В репозитории доступны веса моделей, конвертированные из официальных весов, предоставленных компанией Meta. Это позволяет пользователям сразу приступить к экспериментам без необходимости обучать модели с нуля.​

- Гибкость в выборе моделей: Поддерживаются различные версии моделей Llama 3.2, включая базовые и инструкционные варианты с 1 и 3 миллиардами параметров.​

- Примеры использования: Включены примеры кода для загрузки моделей, настройки токенизатора и генерации текста, что облегчает начало работы с проектом.​

Важно отметить, что предоставленные веса моделей были конвертированы из официальных весов Meta. Для получения оригинальных весов и информации о лицензии рекомендуется обратиться к официальным репозиториям Meta на Hugging Face.​

В целом, llama-3.2-from-scratch — это ценный ресурс для разработчиков и исследователей, желающих глубже понять внутреннее устройство современных языковых моделей и экспериментировать с их архитектурой.

https://huggingface.co/rasbt/llama-3.2-from-scratch

@machinelearning_interview



tg-me.com/machinelearning_interview/1685
Create:
Last Update:

⚡️ Проект llama-3.2-from-scratch, созданный пользователем rasbt (Себастьян Рашка), представляет собой реализацию модели Llama 3.2 на языке PyTorch с нуля.

Цель проекта — предоставить понятный и минималистичный код для изучения и исследования архитектуры больших языковых моделей (LLM).​

Основные особенности проекта:

- Простота и доступность кода: Реализация оптимизирована для читаемости, что делает её подходящей для образовательных целей и исследований.​

- Минимальные зависимости: Для работы требуются только библиотеки torch, tiktoken и blobfile, что упрощает установку и использование.​

- Предоставление предобученных весов: В репозитории доступны веса моделей, конвертированные из официальных весов, предоставленных компанией Meta. Это позволяет пользователям сразу приступить к экспериментам без необходимости обучать модели с нуля.​

- Гибкость в выборе моделей: Поддерживаются различные версии моделей Llama 3.2, включая базовые и инструкционные варианты с 1 и 3 миллиардами параметров.​

- Примеры использования: Включены примеры кода для загрузки моделей, настройки токенизатора и генерации текста, что облегчает начало работы с проектом.​

Важно отметить, что предоставленные веса моделей были конвертированы из официальных весов Meta. Для получения оригинальных весов и информации о лицензии рекомендуется обратиться к официальным репозиториям Meta на Hugging Face.​

В целом, llama-3.2-from-scratch — это ценный ресурс для разработчиков и исследователей, желающих глубже понять внутреннее устройство современных языковых моделей и экспериментировать с их архитектурой.

https://huggingface.co/rasbt/llama-3.2-from-scratch

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1685

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Machine learning Interview from tw


Telegram Machine learning Interview
FROM USA